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Design for Manufacturing“ =

Injection Molding

Process
1. Plastic Pellets are fed into the injection unit through a hopper
2. Screw rotates to transfer pelles forward, melting them in the process
3. Once at the front, pellets are entirely molten
4. Screw plunges forward, injecting molten plastic into the cavity image
5. Plastic solidifies — Mold Opens — Part is Ejected
6. Mold Closes — Repeat

'

(1)

— —71 T—7J T2

\o/ —

From left to right, the components are: ram (1), screw (2), hopper (3), barrel (4), heaters (5),

materials (6), nozzle (7), mold (8), and part (9).

Design Techniques:

L.

NSk v

Use constant wall thickness (1 — 3 mm) = prevents warping and sinking

Hollow out thick sections, then add ribs to increase stiffness

Add smooth transitions (i.e. fillets, chamfers) for parts with multiple wall thicknesses
Round all edges to avoid stress concentrations

Add draft angles (min 2 degrees)

Move part line to intersect with undercut

Add ribs to increase stiffness, rather than increasing thickness

k,\\“'-'f\w of 0. (%wr-‘\ % 2 0.028



Materials:
Plastics including:

a. ABS
= Variety of modifications can be made to ABS to enhance impact resistance,
toughness and heat resistance
= Molding at high temp. improves impact resistance, toughness & heat resistance
= Molding at low temp. improves strength and impact resistance
= Examples: pipes, automotive parts, kitchen appliances, Lego bricks, etc.
b. Polyethylene
= high levels of ductility, tensile strength, impact resistance, resistance to moisture
absorption, and recyclability
= Examples: Plastic bags, bottles, etc.
c. Polycarbonate
= Can undergo large plastic deformations without cracking or breaking
= Main properties: impact resistant and transparency
= Examples: greenhouses, DVD, eyewear lenses, automotive components and
phones
d. Nylon (Polyamide)
= Tough, wear/abrasion resistant and chemical resistant
= Apparel, footwear, sports equipment, automotive products, etc.
e. High Impact Polystyrene
=  brittle
f. Polypropylene
= Flexible, high melting point, high resistance to stress, great impact strength and
doesn’t break down when reacting with chemicals (ex. Utensils, batteries, etc.)



Casting
Process:

Minimum thickness: Smm
Low-cost process that can produce parts in large quantities with no limit in size, shape or
complexity, here’s the process:
1. A pattern made out of metal/wood is used to form the cavity, where the molten metal

is poured

2. Holes are created by sand cores into the mold
3. Pour molten metal into mold, then cool down

Design Techniques:

1. All sections designed with a uniform thickness
2. Design should include gradual change from section to section, where necessary
3. Adjoining sections should be designed with generous fillets
4. A complicated part should be designed as two or more simple castings to be assembled
by fasteners or by welding
Materials:
a. Steel
= Most difficult to produce due to steel’s high melting temperature
= This can aggravate casting problems
b. Gray [ron
c. Brass
d. Bronze
e. Aluminum
Process Advantages Disadvantages Examples
Sand Wide range of metals, sizes, shapes, low | poor finish, wide tolerancd engine blocks, cylnder
cost heads
Shell mold better accuracy, fimsh, higher production | lmated part size connecting rods, gear
rate housmngs
Expendable Wide range of metals, sizes, shapes patterns have low strength| cylinder heads, brake
pallcm Collmh
Plaster mold complex shapes, good surface finish non-ferrous metals, low | prototypes of mechanical
production rate parts
Ceramic mold complex shapes, high accuracy, good small sizes mmpellers. mjection mold
fimish toolng
Investment complex shapes. excellent finish small parts. expensive jewellery
Permanent mold | good finish, low porosity, high Costly mold, simpler gears, gear housings
production rate shapes only
Die Excellent dimensional accuracy. high costly dies. small parts, | precision gears, camera
production rate non-ferrous metals bodies, car wheels
Centrifugal Large cylndrical parts, good quality Expensive, limited shapes| pipes, boulers, flywheels




Sheet Metal Forming Design Techniques

Holes
1.

Distance between holes and edge > 1.5x — 2x thickness

2. Bending radius at least 1.5T
3. Hole diameter should be at least equal to part thickness
4. Distance between holes should at least be 2T or greater
General
5. Uniform wall thickness
6. Consistent bend radius (saves time and money)
7. Bend sheet metal in the same plane (to avoid need for reorientation, saving time and
money)
8. To prevent parts from fracturing or distorting, make sure to keep the inside bend radius at
least equal to the sheet’s thickness
9. Outside radius of curls must be at least twice the sheet’s thickness
10. Max. depth of a countersink is 3.5x material thickness
11. Add collars to increase stiffness around piercings
Bends
12. Add bend relief to strengthen sheet metal parts
13. Bends at edges reduce likelihood of metal tearing

Spring-Back Effect

14.

Add chamfers to corners and beads to bends to reduce spring-back effect

*spring-back occurs when metals try to go back to original shape after being bent*

Designing for Machining Rules of Thumb

Design parts that can be machined with the tool of the largest possible diameter.
Add the large fillets (at least 5 x cavity depth) to all internal vertical corners.

Limit the depth of cavities to 4 times their width.

Align design main features along one of six principal directions

Avoid really thin parts (~0.5mm or 0.02in) to avoid warping or bending of part after

machining



DFM Summary

We want minimal part counts that are easy to produce and assemble
= To achieve this, answer the following questions:
1. Do parts move relative to each other?
2. Do parts need insulation?
3. Do parts need to be made out of different materials?
4. Will combining parts complicated maintenance?
5. Will combining parts interfere with assembly of other parts?
= Ifanswer is No to all questions, then combine parts
= Reducing part count, reduces assembly time, reducing cost
Avoid sharp corners, deep holes and thin walls, so parts don’t get distorted

Injection Molding vs Die Casting

Benefits of Injection Molding:

Production is quicker due to more flexibility in the molding process
Plastic Injection molds can accommodate different plastic or polymer materials
Fillers can be used in plastic molds to increase strength

Efficient process with very accurate finishes

Benefits of Die Casting:

Efficient process with a high degree of accuracy

No need for secondary operations

Complicated designs can be more easily cast

Produces higher-quality products with better tolerance that will last longer

Drawbacks of Die Casting:

Not applicable for metals with high melting points

Large lead times
Can’t cast large parts

IM: If you are looking to produce lots of inexpensive parts since labor and material costs are
relatively low.

DC: If accuracy in design is a priority or you need many complex parts in a short time frame.

More durable and higher quality feel when you go with metals over plastics.



Benefits of Injection Molding over Die Casting, Machining and Sheet Metal Forming:

Cost Savings

Lighter weight

Can form complex shapes, relative to sheet metal forming
Noise reduction if parts consistently come in contact

Skip the paint when using plastics

Plastic less prone to scratches and dents

Plastics don’t corrode

O S o 1D =

Design for Assembly (DFA)

Guidelines
1. Reduce number of parts
2. Use common and standardized parts
3. Design for ease of fabrication by:
a. Use near net shapes to minimize the required machining and processing
b. Avoid designs with sharp corners (induce stress concentrations)
c. Avoid undercuts as they require additional costly tools
d. Design work pieces to used standardized cutters and drill bit sizes
4. Mistake proof the assembly process
a. Notches, asymmetrical holes and stops can be used to ensure the assembly
process is unambiguous
5. Use efficient joining and fasteners
a. Use self-threading screws or adhesives (nuts and bolts are time consuming)
6. Self-fastening components
7. Self-locating components



Mechanical Engineering Basic Questions

Stiffness vs Strength?
Strength is a ability of a material to withstand an applied load without getting plastically
deformed or breaking.

Stiffness is the degree to which an object resists its deformation in applied load.

Hardness vs Toughness?
Hardness: A material's ability to withstand friction or resist abrasion.
Toughness: How well the material can resist fracturing when force is applied (or how much
energy it can absorb before breaking = more energy = tougher)
= Ex: Crumple zones on cars
= Ex: silly putty is technically tough
Steel vs Aluminum?
= Aluminum is more malleable and flexible than steel
=  Aluminum can be pushed to dimensional limits without breaking, unlike steel
= Steel is tougher and more resilient
= Aluminum is corrosion resistant
= Steel is harder than aluminum
= Steel is less likely to deform or bend under weight
= Steel is 2.5x denser than aluminum
=  Aluminum is 1/3 the weight of steel
= Aluminum is cheaper than stainless steel
*  Aluminum is difficult to weld

= Steel is stronger (assuming weight isn’t an issue)
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F = force
m = mass
a = acceleration

T = torque

F = force

L = distance to pivot point
1= moment of inertia about
pivot

a = angular acceleration

E = energy

m = mass

v = velocity

1= moment of inertia

w = angular velocity

g = gravitational acceleration
h = height

k = spring constant

X = spring displacement

o = stress

P = pressure

r =radius

t = thickness of pressure
vessel

M = internal moment

y = distance from neutral axis
I =moment of mertia

T = shear stress from torsion
T = torsional torque

J = polar moment of mnertia

I =moment of mertia

b = side parallel to bending
axis

h = side perpendicular to
bending axis

m = mass

r = radius

I_=moment of mnertia about

center
h = distance from axis of
rotation

X = position

v = linear velocity

a = acceleration
t=time

r =radius

w = angular velocity
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P = pressure

p = density

g = gravity

h = height of fluid
v = velocity

P = pressure

p = density

g = gravity

h = height of fluid
v = velocity

w, = natural frequency

k = stiffness
m = mass

F,, = critical buckling load
E = Young’s Modulus

I = moment of mertia

L, = effective length (differs
based on how end points of
beam are attached)

§ = max deflection of
max

beam in bending

F = force applied

L = length of beam

E = Young’s Modulus

I = moment of inertia

p = linear momentum
L = angular momentum

Q = heat (Joules)

t=time

k = coefficient of thermal
conductivity

A = surface contact area

T = temperature in Kelvin

x = length / distance between
the two points







